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GAS-LIQUID CORRELATION OF IONIZATION ENERGIES
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Ionization potentials of ions and molecules are correlated with the
threshold energies of their aqueous solutions for photoelectron emission.
Inner- and outer-sphere reorganizations are treated, respectively, in terms of
a discrete number of dipoles and a continuous medium model. Calculated and
experimental threshold energies are compared for halide and hydroxide ions and
water. The threshold and reorganization energies of the hydrated electron are
calculated from threshold energies of anions and their absorption spectra for

charge transfer to the solvent.

1. Introduction

The threshold energies for photoelectron emission by aqueous solutions

will be correlated (i) with gas-phase ionization energies and electron
affinities, and (ii) with absorption spectra for charge transfer to the
solvent. The first correlation will be established on the basis of a recent
treatment [1] of the free energy for inner-sphere reorganization in the
photoionization of univalent anions and molecules. Ionizatién energies of
clusters of water molecules in the gas phase obtained in recent [2] ab initio
SCF M0 calculations will be used to estimate the liquid-phase ionization
energy of liquid water. The second correlation will be applied to the
calculation of the threshold energy of the hydrated electron.

2. Free energy of emission and gas-phase ionization

Consider the photoelectron emission by an aqueous solution of a substance
C. The change of free energy from initial to final state for the emission

process is obtained from the sequence,

o
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2
C(aq) = C(q) (1)
C(g) = C'(g) + e (g) (2) |
c*(g) = C*(aq), (3) :

where (aq) and (g) denote respectively the liquid and gas phases. The change
of free energies for (1) to (3) are, respectively, —AGS(C), 4G, and
AGS(C+), where the AGS's pertain to hydration and AGi to ionization
(AGi-s I, the ionization potential).
The free energy of emission AGm js obtained by including the total free

energy of reorganization [3] and a term for the surface potential in the

summation of free energies. Thus,

L L

-+ -]
86, = 1+ 86,(C) - a6 (C) + Ry + R .+ lelx, (4) d
where the positive quantities Rin and Roui are respectively the inner- and :
outer-sphere reorganization free energies; e is the electronic charge and
the surface potential of the solution (|ex] < 0.1 eV in general [4]).
Equation (4) will be applied to anions (sec. 3) and water (sec. 4).
3. Anions r
Explicit forms of Rin and Rout will be introduced in eq. (4) for
b
emission by aqueous solutions of univalent anions A™(aq). Thus [1], :
where AGB is the free energy for Born charging of the dielectric (solvent) in =

the outer-sphere region; U(epa) and U(papa) the energies for
charge-~induced dipole and induced dipole-induced dipole interaction; UIND the

energy for induced dipole formation in the inner-sphere solvation shell.

Fquation (5) is obtained [1] by noting that photoelectron emission by A™(aq)
is the opposite process of hydration of A"(g) except that the negative charge
is removed by electrons in emission and the hydrated atom or radical A(aq) is

left in solution. The term AGB and the U's are subtracted from AGS(A')

vist




in eq. (5) since Born charging is taken into account by the term Rout and

interaction with induced dipoles does not involve a change in nuclear
coordinates. A minor contribution from London dispersion considered in [1] is
omitted in (5). Negligible quadrupole-induced dipole interaction is also
omitted.

The term AGB in eq. (5) will be combined with the term Rout appearing in

eq. (4). Thus,

06y = - (1 - egl)e?r2a, (6)
where € is the static dielectric constant of water, and a = re + 2rw,
re and ' being, respectively, the crystallographic radii of A" (g) and
water (= 1.38 A). Conversely,
-1 -1, 2
Rout = (eop - € )et/2a, (7)

where €op (= 1.777 at 25°C) is the limiting value cf the optical dielectric
constant of liquid water in the visible range.

Cne obtains from (4) to (7) after setting I equal to the electron affinity

Ao of A(a),

86, = Re - ZAGS(A°) + Pgut + U(epa) + U(papa) * U * lelx, (8)
with

P == (l- e;é)e2/2a. (9)

e
out

dielectric (solvent) for the outer-sphere region for a continuous medium model.

The quantity P is the free energy of electronic polarization of the

Conversely, the U's in eq. (8) pertain to a discrete number of induced dipoles

in the inner-sphere region. One has [5],

U(epa) = - Nepal(rc + rw)z (10)
Ulpyp,) = bpZ/(r + 1) (11)
Upyp = (1/20)Np2, (12)

where N is the number of water molecules in the inner-sphere hydration shell of

DGOY LY LR LV P N Y N AR N9 0 S S a2 S W WP I AT AT



A (aq); Py the induced dipole of the solvent; b a structure constant
depending on N (2.296 and 7.114 for'N = 4 and 6, respectively); a (= 1.444 x
1072 cm3) the polarizability of the water molecule. The induced dipole

Po is calculated most simply from

p, = ae/(r, +r,)°. (13)

Values of 86, from eq. (8) are listed in Table I (data from [6] to [9])
and are compared with the experimental threshold energies Et' The surface
potential was taken to be that of water (0.08%#0.06 eV [4]). The contribution
from vibrational relaxation to Rin for OH™ is negligible since the
interatomic distance 0O-H is the same within 0.002 A for OH (g) and OH(g) [8].
Agreement is as good as one could expect in view of some uncertainty about
hydration free energies (cf. [6] vs. [9]).

Structure in the hydration shell can be taken into account on the basis of
the treatment of hydration in [5]. Thus, the radius a = retor, = roe*

2.76 A in eq. (9) is set equal to re+2.19 Aandr_ +2.51 A for N = 4 and

6, respectively. The induced dipole Py is obtained in [5] by minimizing the
total free energy of the processes involving induced dipoles in hydration (cf.
eq. (25) in [5]). The resulting values of Pgut' the sum of the U's of (10)

to (12) and AGm are listed in the second row for each ion in Table 1. The
results are similar to those of row I.

The term Pgut in eq. (8) follows from a continuous medium model whereas
the U's of (10) to (12) are calculated for a discrete number of induced
dipoles. One may try to replace the sum of Pgut and the U's in eq. (8) by
a single quantity P® calculated for a continuous medium outside the spherical
cavity of radius Fes namely

P m - (1 - cgr)e?/ar,. (14)
The values of 8G, computed in this way are listed in Table 1, third row for

each ion. These results are, of course, approximate.
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: 4. wWater

Equation (4) is readily transposed to photoelectron emission by liquid

iﬁ‘ : water. Process (1) involves the free energy of vaporization ‘Gvap (= 0.09 eV)
i.:\ | of water, and eq. (4) becomes
§§5, AGm =1+ AGS(H?0+) + ‘Gvap * R * Rout + lelezo, (15)
i%ﬁ where XHZO (= 0.08+0.06 eV [4]) is the surface potential of water. Equation
23; (5) for R;, now becomes
'izﬁ Rip = - [AGS(H20+) - 86 - U(epu) - U(pcpa) - Uipp - AGvap], (16)
;;%5 where AGvap = -AGS(HZO). The final result,
ﬂ:ﬁi 86, =1+ 2AGvap + Pgut + U(ep,) *+ Ulp,p,) * Uppp * lelezo, (17)
" is similar to eq. (8), but the term -2a6 (A") for hydration of A™(g) in the
Eés latter is now replaced by ZAGvap for vaporization. Vibrational relaxation is
i?g negligible since the vertical and adiabatic gas-phase ionization energies are
&?\ practically the same.
2 Assumiﬁg that the crystallographic radius r. of H20+ is the same as fo =
é;g 1.38 X for water, one computes Pgut = -0.76 eV from (9), p_ = .91 debye from
R (13), Ulep,) = -1.43 eV from (10) for N = 4, U(p,p,) = 0.06 eV from (11), Upyp
:*é = 0.72 eV from (12). Equation (15) yields 86, = 11.47 eV for I = 12.62 eV,
. 2? 86, 4p = 0.09 eV and lele20 = 0.08 eV whereas the experimental threshold
éﬁ* energy is 10.0420.02 eV. Applying the method of [5] as in sec. 3, one computes
Z.:; P,¢ = ~0.88 eV, Ulep ) = -1.17 eV, U(p_p_) = 0.04 eV, Uy = 0.46 eV,
;3? a6, = 11.31 eV. This value of 4G, is still too high by ca. 1.3 eV in comparison
::f with the experimental threshold, and the calculation of 8G,, is definitely less
::j satisfactory for water than for the ions in sec. 3. The preceding calculation
isg calculation of AGm of water in inadequate for the following reasons: (i) Most
?;3 importantly, the model with spherical symmetry implied by the equation used in
é 53 the calculation of AGm only provides a crude approximation for a species such
%

------




as H20+ even with the improvement of [5]. (ii) The number N = 4 of nearest

neighbors holds for ice but is higher for liquid water, namely N = 4.4 on the

(ﬁ average near 0°C [10]. (iii) Hydrogen bonding was not considered in the
;ﬁ¢: derivation [1] of eq. (5) for Rine

b

P |

fg} Just as was done in sec. 3, one can replace the sum of Pgut and the sum
‘g

of the U's in eq. (15) by the free energy P® of eq. (14). One computes P® =

" -2.28 eV and 46, = 10.6 eV. This result is to be compared with E, =

'ééé 10.042£0.02 eV, but the treatment is very approximate. The equation for AGm

f'i with the term P® is identical to the equation in [11,12] for photoionization

;;§ in the bulk of a condensed phase (except for the non-applicable term 2AGvap

: A and the contribution from the conduction band level in the liquid in [12]).

. The results of recent SCF MO calculations of the ionization energies of

< clusters of water molecules in the vapor phase [2] can be used to estimate the

sum U(epn) + U(papc) + UIND in eq. (17). Consider clusters consisting

e of a water molecule undergoing photoionization which is surrounded by 1 to 4

Ef; water molecules. The ionization energy of these clusters is lowered by 1 to 4
‘?ﬁ times the sum of the following energies: interaction between the ion H20+

" and the surrounding induced dipoles, induced dipole-induced dipole interaction,
%é and formation of induced dipoles to a first approximation. This sum (in eV) per
.f > induced dipole is accordingly (12.62 - In)/(n - 1) (Table 2), that is, 0.35 eV.
;E; Hence, one has in eq. (17), U(epa) + U(pnpa) + Upyp = -4 x 0.35 = 1.4 eV

;zg approximately. This enerqgy is twice the result (-0.71 eV) obtained from egs. (10)
Dy to (13). Neglecting hydrogen bonding as before, one obtains from eq. (17) 86, #
f“f 10.6 eV (for Pgut ~ -0.9 eV and lele 0" 0.08 eV). This calculation is quite
'Etg crude, but it yields a result closer io the experimental threshold energy

Eg; (10.04%0.02 eV) than eqs. (10) to (13) and the method of [5]. The ionization

;. energy of the cluster for n = 2, 12.62 - 0.35 ® 12.3 eV, calculated from this
‘ﬁ# simple model is fairly close to the recently determined experimental value of
12.140.1 eV [13].

Lo

N

ENTRFAF AT N RENT .{ SN ‘.-,;,- n ‘.-'.r,‘ SN N




5. Hydrated electron

The free energy of emission of the hydrated electron is obtained by
transposition of the cycle (1) to (3) in sec. 2. Thus,

86, = - 8G;(e7) + R + Ielezo, (18)
where AGS = -1.62 eV [14] is the free energy of hydration of the electron and
R is the reorganization free energy of the cavity in the liquid left upon
removal of the electron. The quantity R will be computed from the correlation
between threshold energies of anions and their absorption spectra for charge
transfer to the solvent. The following relationship is derived in [15]:

4G, - 86y = aGcy - 4G - R + R(D7A), (19)
where AGm is the free energy of emission for the donor (anion) D7; AGH =
4.48 eV is the free energy for 1/2H2(g) = H*(aq) + e (g); AGCT is the
free energy for the charge transfer process D"A » DA™; aG = 2.77 eV [14] is
the change of free energy for 1/2H2(g) = H+(aq) + e (aa); and

R(DTA) = (cgg = c5 )€l (20)
with

Poma = Te * 2r, * 1y, (21)

where e and ry are the crystallographic radii of the anion and water,
respectively, and r = 0.91 A [16] is the radius of the void in water
associated with the hydrated electron.

One sets 4G = E, in eq. (19) for the donor anion and 8Gep = Epo, at
the maximum of the charge transfer absorption band [17]. Thus,

R=E., - E, * 26, - a6+ R(D7A), (22)
where a6, - 4G = 4.48 - 2.77 = 1.71 eV is the free energy for the process
e (aq) = e (g). This free energy is also equal to -AGs(e°) + |e|xH 0

2

= 1.62 + 0.08 = 1.70 eV, where the uncertainty on the surface potential is £0.06

eV. The values of AGH - a6 and —AGs(e) + ]elezo therefore are self-consistent.
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Possible contribution from the vibrational relaxation energy of the radical
produced by photoionization is neglected in eq. (22).

Values of R computed from (20) to (22) and listed in Table 3 yield a mean
value of R = 1.25 eV (0.10 eV standard deviation) in reasonable agreement with
the eneray of 1.48 eV from model calculations [16]. The corresponding free
energy of emission of the hydrated electron from (18) is 1.62 + 1.25 + C.08 =
'“; 2.95 eV (0.13 eV standard deviation).

g The values of R(PTA) and R in Table 3 are not very different for each
anion except ferrocyanide, and consequently one has Et - AGH = Emax - 4G

to a first approximation [15]. Ferrocyanide ion is exceptional because its
size causes R(D™A) to be unusually low (0.97 eV).
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Table 1
Calculated emission free energies of anions vs. experimental threshold
energiesa)
b) c) -yd) e e) e f)
re Ao -86¢ (A7) ~Pout U P 86 Es
(R) (eV)  (ev) (ev) (eV) (ev)  (ev) (ev)
c1r 1.81 2.61 2.30 0.69 -0.55 - 9.05 (I) 9.0
0.73 -0.51 - 9.05 (II)
-1.74 8.5 (III)
Br~ 1.95 3.36 3.14 0.67 -0.49 - 8.56 (I) 8.2
0.71 -0.43 - 8.58 (II)
-1.61 8.1 (III)
I 2.16 3.06 2.66 0.64 -0.37 - 7.45 (1) 7.4
0.67 -0.34 - 7.45 (11)
-1.46 7.0 (III)
OH™ 1.47 1.83 3.92 0.74 -0.59 - 8.44 (1) 8.6
0.86 -0.59 - 8.32 (I1)

-2.14 7.6 (III)

a)Fir'st row for each ion (I): a = re* 2.76 X in eq. (9) and P, from eq.
(12). Second row (I1): a and Py according to [5] (see text). Third row
(111): using P® from eq. (14).

b)From [6].

c)Fr'om [7] for C1, Br, I and [8] for OH.

d)r-'rom [9].




Table I (continued)

v = U(ep) + U(p.p.) *+ Upype EU(T) = -1.21 + 0.06 + 0.60 (C17);

-1.02 + 0.02 + (.51 (Br~); -0.80 + 0.03 + 0.4C (I"); -1.26 + 0.04 + 0.63
(OH™). =U(IT) = -0.83 + 0.03 + 0.29 (C17); -0.68 + 0.02 + 0.23 (Br~);

-0.55 + 0.02 + 0.19 (I"); -1.08 + 0.03 + 0.46 (OH™).
Br~, I” and N = 4 for OH™.

f)(Talculated for X = 0.08%0.06 V for water [4].

N==¢ for C1°,




Table 2

Ionization eneraies of clusters of water molecules

nd) b) (12.62 - 1)/(n - 1)
(ev) (eVv)

1 12.62 -

3 11.93 0.35

4 11.55 0.36

5 11.31 0.33

a)Number' of water molecules in cluster.
b)Fr'om SCF M0 calculations in [2] except for I1 = 12.62 eV (experimental).

In (11.88 eV) for n = 2 not used since it is obviously too low in comparison

with In (11.93 ev) for n = 3.
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13
Table 3

Reorganization free energy of the hydrated electron

donor E, e2) re R(D™A) R
(V)  (eV) () (eV) (ev)
Fe(CN)g™ 6.2 4.84 4.5 0.97 1.32
SCN™ 7.2 5.58 2.5 1.28 1.37
$,02" 7.3 5.76 3.5 1.10 1.27
- 7.4 5.48 2.16 1.36 1.1
Br™ 8.2 6.23 1.95 1.41 1.1
OH™ 8.6 6.63 1.47 1.54 1.28
503" 8.7 7.08 2.3 1.33 1.42
HPOZ 8.8 6.94 2.4 1.30 1.15
1 9.0 7.08 1.81 1.45 1.24
H,PO2" 0.2 7.31 2.4 1.30 1.12
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